Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
J Mol Biol ; : 167800, 2022 Aug 22.
Article in English | MEDLINE | ID: covidwho-2234633

ABSTRACT

Mechanical cues dynamically regulate membrane receptors functions to trigger various physiological and pathological processes from viral invasion to immune defense. These cues mainly include various types of dynamic mechanical forces and the spatial confinement of plasma membrane. However, the molecular mechanisms of how they couple with biochemical cues in regulating membrane receptors functions still remain mysterious. Here, we review recent advances in methodologies of single-molecule biomechanical techniques and in novel biomechanical regulatory mechanisms of critical ligand recognition of viral and immune receptors including SARS-CoV-2 spike protein, T cell receptor (TCR) and other co-stimulatory immune receptors. Furthermore, we provide our perspectives of the general principle of how force-dependent kinetics determine the dynamic functions of membrane receptors and of biomechanical-mechanism-driven SARS-CoV-2 neutralizing antibody design and TCR engineering for T-cell-based therapies.

2.
2021 International Symposium on Biomedical Engineering and Computational Biology, BECB 2021 ; 2021.
Article in English | Scopus | ID: covidwho-1736138

ABSTRACT

A diet with specific variety of food and drinks enhances physical condition, prevents disease, and assists in keeping an individual mentally and physically healthy. The global pandemic of coronavirus disease -2019 (Sars-Cov-2/Covid-19) has highlighted public awareness of the importance of eating a nutritious diet to boost immune defenses. This study aimed at exploring the awareness of Jordanian population on the relationship between food intake and immunity. A cross-sectional design was used to achieve the aim of this investigation. The study targeted Jordanian population (including 1024 participants residing in all Jordanian governorates). Awareness of Jordanians was tested via a questionnaire that was validated and tested for reliability (internal consistency). The awareness is usually indicated by knowledge, attitudes, and practices. The questionnaire was developed and introduced in the Arabic language to accommodate Jordanian culture. Results of this investigation showed that the survey tool was valid and reliable (Cronbach's-alpha value = 0.842). The mean, median, and mode values for awareness score are ĝ1/451, 52, and 56 out of 70 indicating very good awareness of Jordanian population towards the relationship between food intake and immunity. It is recommended to translate the survey tool used in this investigation into other languages and validate it. In addition, it is recommended to consume healthy foods of Jordanian culture to boost immunity. Furthermore, it is recommended to increase awareness regarding the correct and fad information as well as the importance of vaccination role on immunity via educators and family, health care team members, magazines and newspapers, and social media. © 2021 ACM.

3.
Virol J ; 18(1): 180, 2021 09 05.
Article in English | MEDLINE | ID: covidwho-1388778

ABSTRACT

BACKGROUND: Covid-19 has the respiratory tract as the main target of infection, and patients present mainly dyspnea, pneumonia, dry cough, and fever. Nevertheless, organs outside the respiratory tract had been reported in recent studies, including the gastrointestinal tract and liver. The host innate immune system recognizes pathogen-associated molecular patterns (PAMPs) through their pattern recognition receptor (PRRs). Toll-like receptor 7 (TLR-7) is a pattern recognition receptor recognizing ssRNA (SARS-CoV-2 is an ssRNA). Polymorphisms are characterized by two or more alternative forms of a distinct phenotype in the same population. Polymorphisms in tlrs genes can negatively influence the immune response to infectious diseases. There are several references in the literature to non-synonymous single nucleotide (rs) polymorphisms related to several genes. Some of them are important for the innate immunity, as rs 179008 (tlr-7), rs3775291 (tlr3), rs8177374 (tir domain-containing adaptor protein, tirap), rs1024611 (monocyte chemoattractant protein-1, mcp-1) and rs61942233 (2'-5'-oligoadenylate synthase-3, oas-3). CASE PRESENTATION: We identified a 5-year-old-male child with gastrointestinal symptoms and fever presenting acholic stool and jaundice, who was positive for SARS-CoV-2 IgM, IgA, and IgG and presenting the Gln11Leu rs 179008 in tlr-7. The child presented high levels of aspartate aminotransferase, alanine aminotransferase, bilirubin, C-reactive protein, D-dimer, gamma-glutamyl transferase, alkaline phosphatase, and was negative for serological tests for hepatitis A, B, C, E, HIV 1 and 2, herpes virus, cytomegalovirus, Epstein-Barr virus, and negative for RTqPCR for Influenza A and B, RSV and SARS-CoV-2. We also investigated other SNPs in the tlr-3 (rs3775291), tirap (rs8177374), mcp-1 (rs1024611), and oas-3 (rs61942233) genes, and no mutation was detected. After an interview with the child's caregivers, any possible accidental ingestion of drugs or hepatotoxic substances was ruled out. CONCLUSION: To our knowledge, this is the first report of a SARS-CoV-2 caused hepatitis in a male child that has the tlr-7 Gln11Leu rs 179008, which could impair an efficient initial immune response. The knowledge of the patient's immune deficiency could improve the treatment to correct this deficiency with specific medications.


Subject(s)
COVID-19/genetics , COVID-19/virology , Hepatitis, Viral, Human/genetics , Hepatitis, Viral, Human/virology , Toll-Like Receptor 7/genetics , Antibodies, Viral/blood , COVID-19/immunology , Child, Preschool , Epstein-Barr Virus Infections/genetics , Epstein-Barr Virus Infections/virology , Feces/virology , Hepatitis, Viral, Human/immunology , Herpesvirus 4, Human/isolation & purification , Humans , Immunity, Innate , Influenza, Human , Male , Polymorphism, Single Nucleotide , SARS-CoV-2/isolation & purification
4.
Immunity ; 54(2): 235-246.e5, 2021 02 09.
Article in English | MEDLINE | ID: covidwho-988081

ABSTRACT

The interleukin-6 (IL-6) membrane receptor and its circulating soluble form, sIL-6R, can be targeted by antibody therapy to reduce deleterious immune signaling caused by chronic overexpression of the pro-inflammatory cytokine IL-6. This strategy may also hold promise for treating acute hyperinflammation, such as observed in coronavirus disease 2019 (COVID-19), highlighting a need to define regulators of IL-6 homeostasis. We found that conventional dendritic cells (cDCs), defined in mice via expression of the transcription factor Zbtb46, were a major source of circulating sIL-6R and, thus, systemically regulated IL-6 signaling. This was uncovered through identification of a cDC-dependent but T cell-independent modality that naturally adjuvants plasma cell differentiation and antibody responses to protein antigens. This pathway was then revealed as part of a broader biological buffer system in which cDC-derived sIL-6R set the in-solution persistence of IL-6. This control axis may further inform the development of therapeutic agents to modulate pro-inflammatory immune reactions.


Subject(s)
Dendritic Cells/immunology , Interleukin-6/blood , Interleukin-6/immunology , ADAM17 Protein , Animals , Cell Differentiation , Immunity, Humoral , Immunoglobulin M/immunology , Inflammation , Interferon Regulatory Factors/genetics , Interferon Regulatory Factors/immunology , Interleukin-6/genetics , Membrane Glycoproteins/immunology , Mice , Mice, Inbred C57BL , Mice, Transgenic , Plasma Cells/immunology , Receptors, Interleukin-6/blood , Receptors, Interleukin-6/immunology , Signal Transduction/immunology , Toll-Like Receptor 4/immunology , Toll-Like Receptor 7/immunology
5.
Cells ; 9(8)2020 07 25.
Article in English | MEDLINE | ID: covidwho-698553

ABSTRACT

The outbreak of the coronavirus disease 2019 (COVID-19) pandemic has caused a global public health crisis. Viral infections may predispose pregnant women to a higher rate of pregnancy complications, including preterm births, miscarriage, and stillbirth. Despite reports of neonatal COVID-19, definitive proof of vertical transmission is still lacking. In this review, we summarize studies regarding the potential evidence for transplacental transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), characterize the expression of its receptors and proteases, describe the placental pathology and analyze virus-host interactions at the maternal-fetal interface. We focus on the syncytium, the barrier between mother and fetus, and describe in detail its physical and structural defense against viral infections. We further discuss the potential molecular mechanisms, whereby the placenta serves as a defense front against pathogens by regulating the interferon type III signaling, microRNA-triggered autophagy and the nuclear factor-κB pathway. Based on these data, we conclude that vertical transmission may occur but rare, ascribed to the potent physical barrier, the fine-regulated placental immune defense and modulation strategies. Particularly, immunomodulatory mechanisms employed by the placenta may mitigate violent immune response, maybe soften cytokine storm tightly associated with severely ill COVID-19 patients, possibly minimizing cell and tissue damages, and potentially reducing SARS-CoV-2 transmission.


Subject(s)
Coronavirus Infections/transmission , Infectious Disease Transmission, Vertical , Placenta/immunology , Placenta/virology , Pneumonia, Viral/transmission , Pregnancy Complications, Infectious/immunology , Autophagy/immunology , Betacoronavirus , COVID-19 , Coronavirus Infections/immunology , Coronavirus Infections/virology , Female , Humans , Infant, Newborn , MicroRNAs/genetics , MicroRNAs/metabolism , Pandemics , Placenta/metabolism , Placenta/pathology , Pneumonia, Viral/immunology , Pneumonia, Viral/virology , Pregnancy , Pregnancy Complications, Infectious/virology , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL